
/* CMPUT 201 Assignments */

/* Dues: */

/* #3: 11:55pm, December 8, 2017 */

(Mandatory assignment cover-sheet or head comment; without it, your work will not be marked.)

/* Submitting student: _________________________________________________________________

Collaborating classmates: ______________________________________________________________

Other collaborators: ___________________________________________________________________

References (other than textbook & lecture slides):

________________________________________________________________________________________

________________________________________________________________________________________

_______________________________________________________________________________________*/

Regardless of the collaboration method allowed, you must always properly acknowledge the sources you
used and people you worked with. Your professor reserves the right to give you an exam (oral, written,
or both) to determine the degree that you participated in the making of the deliverable, and how well
you understand what was submitted. For example, you may be asked to explain any solution that was
submitted and why you choose to write it that way. This may impact the mark that you receive for the
deliverable.

So, whenever you submit a deliverable, especially if you collaborate, you should be prepared for an
individual inspection/walkthrough in which you explain what every line of your submission does and why
you choose to write it that way.

1



/* CMPUT 201 Assignment #3 */

/* Due: 11:55pm, December 8, 2017 */

In Assignment #1, your program can successfully read in an input file that describes n = NUM PT

points in the two-dimensional plane, within the rectangular area [0, MAX X]× [0, MAX Y]. Your program for
Assignment #2 computes a minimum-weight spanning tree (MST) for these n points. By executing the
following command,

>myprogram -i instance10 001.txt

your program appends the edges of the MST to the input file instance10 001.txt, one in a line as:
i i∗ d(i, i∗)

where pi and pi∗ are the two end points of the edge, pi is the parent of pi∗ , and d(i, i∗) is the weight of the
edge (the distance between the two points).

The goal of Assignment #3 is to lay down the edges of the MST to achieve the maximum total
overlap, and to conduct numerical experiments to collect the statistics (Lecture slide set #11 contains
some illustration). The following list contains the specifications for Assignment #3 (10 marks in total):

1. Using the following command to run your program for Assignment #3,

>myprogram -i instance10 002.txt [-o output10 002.txt]

Here the input file instance10 002.txt is in the format resulted from Assignment #2 (provided as
the sample input in eClass), that is, it contains the edges of the MST.

The option “-o output10 002.txt” specifies a file to write the program output; if it is not there,
your program writes output to stdout data stream.

2. The following data type is strongly recommended to be used in your program; the subsequent des-
cription is based on this struct:

struct point {

int index; /* the order in the instance file */

int x; /* x coordinate */

int y; /* y coordinate */

int parent; /* parent in the tree when added */

int num_children; /* has value 0 -- 8 */

int child[8];

int overlap_hv; /* total overlap when horizontal then vertical */

int overlap_vh; /* total overlap when the other way */

};

Essentially, this new data type is for storing information associated with a point, which has a
number of entries and their meanings. In particular, it is guaranteed that the number of child-
ren num children one can have is at most 8; the member ‘overlap hv’ records the total overlap
of the subtree rooted at the edge (parent, index) when the edge (parent, index) is laid as an
L-shape first horizontally out of parent then vertically to reach index (that is, parent is incident
at the horizontal portion of the edge and i is incident at the vertical portion of the edge; in the
degenerate case, the horizontal portion or the vertical portion of the edge has length 0).

When a variable of struct point is declared, all its members are initialized to −1, indicating invalid
values, except .num children initialized to 0.

In the sequel, assume you declare the following array to store the n points:

struct point p[n];

2



3. Assume the first given point in the instance file has index/subscript 0 (that is, p[0] is the root of
the MST). If n = 1, your program terminates without doing anything; otherwise (i.e., n > 1), your
program prints to the output the values of all the members for the second point (i.e., p[1]), one in
a line. For the member array .child, you only need to print out the children that are ≥ 0. These
form the first set of lines in the output; print an empty line after them.

Using the sample input file instance10 002.txt, your program should print the following out:

p[1].index = 1;

p[1].x = 0;

p[1].y = 90;

p[1].parent = 5;

p[1].num_children = 0;

p[1].child[8] = {};

p[1].overlap_hv = 0;

p[1].overlap_vh = 0;

4. Starting with the root of the MST, your program prints to the output the following members in one
line:
.index, .num children, .child[0], . . ., .child[.num children - 1]

Then recursively prints the same information for each child. These form the second set of lines in
the output; print an empty line after them.

(This is the depth-first-search order of the points, or the DFS order.)

Using the sample input file instance10 002.txt, your program should print the following out:

p[0].index = 0, .num_children = 1, .child[0] = 9

p[9].index = 9, .num_children = 1, .child[0] = 4

p[4].index = 4, .num_children = 1, .child[0] = 5

p[5].index = 5, .num_children = 2, .child[0] = 8, .child[1] = 1

p[8].index = 8, .num_children = 1, .child[0] = 7

p[7].index = 7, .num_children = 2, .child[0] = 3, .child[1] = 6

p[3].index = 3, .num_children = 0

p[6].index = 6, .num_children = 1, .child[0] = 2

p[2].index = 2, .num_children = 0

p[1].index = 1, .num_children = 0

5. Let O denote the reversed DFS order.

Using the sample input file instance10 002.txt, this order O (using the indices of the points) is

1, 2, 6, 3, 7, 8, 5, 4, 9, 0

Suppose point pi is at the head of the order O. There are two possible cases (also refer to lecture
slide set lecture11.pdf):

(a) pi has no children (.num children = 0). In this case, set both members .overlap hv and
.overlap vh to 0, and pi is said processed and removed from O.

(b) pi has .num children > 0 children. In this case, all the children must have been processed.
When the edge (.parent, i) is laid as first horizontally out of .parent then vertically to reach
i, for each combination of how the edges (i, .child[j])’s for j = 0, 1, . . . , .num children −1
are laid, compute the overlap of these .num children +1 edges and add the .overlap xx’s of

3



all its children. (Here xx corresponds to how the edge (i, .child[j]) is laid out.) This is the
total overlap for the combination. Among all combinations, the maximum total overlap is set
for the member .overlap hv of point pi.

In the same way, compute .overlap vh for point pi.

Afterwards, pi is said processed and removed from O.

Note: when pi is the root (that is, the last point in O), which has no parent, only the combinations
of the child edges are examined to compute .overlap hv for point pi, and we certainly have
.overlap vh = .overlap hv.

6. Your program prints to the output the following lines (the last/third set of lines):
The total overlap is .overlap hv (%d)

The reduction rate is ...(%.2f)

and appends to the instance file the following comment lines:
#The total overlap is .overlap hv (%d)

#The reduction rate is ...(%.2f)

where .overlap hv is replaced by its value for the root, and the reduction rate is calculated as
.overlap hv divided by the length of the MST.

The above specifications on your program for Assignment #3 worth 8 marks. The second task in
this assignment is as follows, and worths 2 marks:

1. Use your program for Assignment #1 to generate 100 random instances for each of n = 100, 200, 300,
400, 600, 800, 1000 (7 values), with the fixed circuit board area [0, 1000]× [0, 1000].

The instance files are “instanceXXX YYY.txt”, where XXX is the number n of points, and YYY ranges
from 001 to 100.

2. For each n, run your programs (for Assignment #2 and Assignment #3) on the 100 instances,
to obtain the average reduction rate, the average execution time (in minutes and seconds) of your
program for Assignment #2, and the average execution time (in minutes and seconds) of your program
for Assignment #3.

3. Print these values in the following way (as a text file named result yourCCID.txt):
n, reduction rate, running time for A2, running time for A3

one row for each n.

4. Submit this file together with your C program for Assignment #3.

//End of Assignment #3.

4


